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Abstract
We propose and discuss some toy models of stock markets using the same
operatorial approach adopted in quantum mechanics. Our models are suggested
by the discrete nature of the number of shares and of the cash which are
exchanged in a real market, and by the existence of conserved quantities, like
the total number of shares or some linear combination of cash and shares. The
same framework as the one used in the description of a gas of interacting bosons
is adopted.

PACS numbers: 89.65.Gh, 05.30.−d

1. Introduction

A huge literature exists concerning the time behaviour of financial markets, most of which
is based on statistical methods, see [1] and references therein. In recent years a somewhat
different strategy has also been considered. This strategy takes inspiration from the many-
body nature of a stock market, nature which suggests the use of tools naturally related to
quantum mechanics and, in particular, to QM∞, i.e. quantum mechanics for systems with
infinite degrees of freedom. Examples of this approach can be found, for instance, in [2] and
[3], where the concepts of Hamiltonian, phase transition, symmetry breaking and so on are
introduced. However, in none of these papers, and in our knowledge not even in other existing
literature, has the analysis of the time evolution of the portfolio of each single trader been
undertaken. It should be mentioned, however, that a point of view not very different from the
one adopted here is discussed, for instance in [4] and [5].

In this paper we use quantum mechanical ideas to construct some toy models which should
mimic a simplified stock market. In all our models, where for simplicity a single kind of share
is exchanged, the total number of shares does not change in time. This reminds of what
happens in a totally different context, i.e. in a gas of elementary particles which can interact
among them but without changing their total number. Also, the price of a single share does not
change continuously, since any variation is necessarily an integer multiple of a certain minimal
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quantity, the monetary unit, which can be seen, using our quantum mechanical analogy, as a
sort of quantum of cash. QM∞ provides a natural framework in which these features can be
taken into account. It also provides some natural tools to discuss the existence of conserved
quantities and to find the differential equations of motion which drive the portfolio of each
single trader, as we will see.

The paper is organized as follows.
In the next section we discuss a first easy model and we give an interpretation to the

quantities used to define the model. This oversimplified model will be useful to fix some
general ideas.

In section 3 we improve the model introducing the cash, the price of the share and the
supply of the market. We prove that many integrals of motion exist. The equations of motion
are solved using a perturbative expansion, well known in QM∞.

In section 4 we consider a particular version of this model which we completely solve
using the so-called mean-field approximation. We also discuss the role of KMS-like states in
our framework.

Section 5 contains our conclusions and plans for the future, while in appendix A we
give few definitions and results concerning the mathematical framework used along the paper,
which we have included here for those readers who are not familiar with quantum mechanics.
In appendix B we discuss some more results related to the mean-field model.

2. A first model

The model we discuss in this section is really an oversimplified toy model of a stock market
based on the following assumptions:

1. our market consists of L traders exchanging a single kind of share;
2. the total number of shares, N, is fixed in time;
3. a trader can only interact with a single other trader: i.e. the traders feel only a two-body

interaction;
4. the traders can only buy or sell one share in any single transaction;
5. there exists an unique price for the share, fixed by the market. In other words, we are not

considering any difference between the put and the buy prices;
6. the price of the share changes with discrete steps, multiples of a given monetary unit;
7. each trader has a huge quantities of cash that he can use to buy shares but which does not

enter, in the present model, in the definition of his portfolio whose value is fixed only by
the number of shares.

Let us briefly comment the above assumptions: of course assuming that there is only a
single kind of share may appear rather restrictive but we believe that more species of shares
can be introduced without major changes. However, along all this paper we only work in this
hypothesis just to simplify the treatment. The third assumption above simply means that it
is not possible for, say, the traders t1, t2 and t3 to interact with each other at the same time:
however, t1 can interact directly with t3 or via its interaction with t2 : t1 interacts with t2
and t2 interacts with t3. This is a typical simplification in many-body theory where often all
the N-body interactions, N � 3, are assumed to be negligible with respect to the two-body
interaction. Assumptions 4, 5 and 7 are useful to simplify the model and to allow us to extract
some driving ideas to construct more realistic models. Finally, as we have seen, assumption 6
is a natural one. Most of these assumptions will be relaxed in the next section.

As we discuss in the appendix, the time behaviour of this model can be described by an
operator called the Hamiltonian of the model, which describes the free evolution of the model
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plus the effects due to the interaction between the traders. The Hamiltonian of this simple
model is the following:

H = H0 + Hprice, H0 =
L∑

l=1

αla
†
l al +

L∑
i,j=1

pijaia
†
j , Hprice = εp†p, (2.1)

where the following commutation rules are assumed:[
al, a

†
n

] = δlnI, [p, p†] = I, (2.2)

while all the other commutators are zero. The meaning of these operators is discussed in
more details in appendix A. Here we just recall that al and a

†
l , respectively destroys and

creates a share in the portfolio of tl , while the operators p and p† modify the price of the
share: p makes the price decrease of ε, while p† makes it increase of the same quantity. The
coefficients pij ’s take value 1 or 0 depending on the fact that ti interacts with tj or not. We
also assume that pii = 0 for all i, which simply means that ti does not interact with himself.
For those who are familiar with second quantization, there is an easy interpretation for the
Hamiltonian above, which can be deduced also from what is discussed in appendix A: while
εp†p +

∑L
l=1 αla

†
l al describes the free evolution of the operators {al} and p, whose physical

meaning will be considered again later on in this section, the single contribution aia
†
j of the

interaction Hamiltonian
∑L

i,j=1 pijaia
†
j destroys a share belonging to the trader ti and creates

a share in the portfolio of the trader tj . In other words: if pij = 1 then the trader ti sells a
share to tj . However, since H must be self-adjoint (for mathematical and physical reasons),
then pij = 1 also implies pji = 1. This means that the interaction Hamiltonian contains both
the possibility that ti sells a share to tj and the possibility that tj sells a share to ti . Different
values of αi in the free Hamiltonian are then used to introduce an ability of the trader, which
will make more likely that the most expert trader sells or buys his shares to the other traders
so to increase the value of his portfolio.

As we will discuss in appendix A, the time evolution of an operator X of the model
is X(t) = eiHtX e−iHt and it satisfies the following Heisenberg differential equation:
dX(t)

dt
= i eiHt [H,X] e−iHt = i[H,X(t)]. The only observables whose time evolution we

are interested in are, clearly, the price of the share and the number of shares of each traders.
Indeed, as we have already remarked, within our simplified scheme there is no room for
the cash of the trader! The price operator P̂ is P̂ = εp†p, while the j-number operator is
n̂j = a

†
j aj , which represents the number of shares that tj possesses. The operator total number

of shares is finally N̂ = ∑L
j=1 n̂j = ∑L

j=1 a
†
j aj . The choice of H in (2.1) is suggested by the

requirement (2) above. Indeed it is easy to check, using (2.2), that [H, N̂ ] = 0. This implies
that the time evolution of N̂, N̂(t) = eiHt N̂ e−iHt is trivial: N̂(t) = N̂ for all t. However this
does not imply also that [H, n̂j ] = 0, which, as a matter of fact, is not true in general. This is
clear from the definition of H: the term

∑L
l=1 αla

†
l al does not change the number of shares of

the different traders, but only counts this number. On the contrary,
∑L

i,j=1 pijaia
†
j destroys a

share belonging to ti but, at the same time, creates another share in the portfolio of the trader
tj . In this operation, the number of the shares of the single traders are changed, but the total
number of shares remains constant! It may be worth noticing that if all the pij are zero, i.e. if
there is no interaction between the traders, then we also get [H, n̂j ] = 0: our model produce
a completely stationary market, as it is expected.

We implement assumptions (5) and (6) by requiring that the price operator P̂ has the
form given above, P̂ = εp†p, where ε is the monetary unit. Such an operator is assumed to
be a part of H, see (2.1). Also, because of the simplifications which are assumed in this toy
model, P̂ is clearly a constant of motion: [H, P̂ ] = 0. This is not a realistic assumption, and
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will be relaxed in the next sections. However, it is assumed here since it allows us a better
understanding of the meaning of the αl’s, as we will discuss later.

In order to describe a state of the system in which at time t = 0 the portfolio of the first
trader consists of n1 shares, the one of t2 of n2 shares, and so on, and the price of the share is
P = Mε, we should impose that the market is in a vector state ωn1,n2,...,nL;M , see appendix A,
defined by the vector

ϕn1,n2,...,nL;M := 1√
n1!n2! · · · nL!M!

(
a
†
1

)n1
(
a
†
2

)n2 · · · (a†
L

)nL
(p†)Mϕ0, (2.3)

where ϕ0 is the vacuum of the model: ajϕ0 = pϕ0 = 0 for all j = 1, 2, . . . , L. If X ∈ A,A

being the algebra of the observables of our market, then we put

ωn1,n2,...,nL;M(X) = 〈
ϕn1,n2,...,nL;M,Xϕn1,n2,...,nL;M

〉
, (2.4)

and 〈 , 〉 is the scalar product in the Hilbert space of the theory, see again the appendix.
The Heisenberg equations of motion (A.2) for the annihilation operators al(t) produce the
following very simple differential equation:

iȧ(t) = Xa(t), (2.5)

where we have introduced the matrix X, independent of time, and the vector a(t) as follows:

X ≡




α1 p21 p31 . . pL−11 pL1

p12 α2 p32 . . . pL2

p13 p23 α3 . . . .

. . . . . . .

. . . . . . .

p1L−1 p2L−1 p3L−1 . . αL−1 pLL−1

p1L p2L p3L . . pL−1L αL




, a(t) ≡




a1(t)

a2(t)

a3(t)

.

.

aL−1(t)

aL(t)




.

Note that, due to the conditions on the pij ’s, and since all the αl’s are real, the matrix X
is self-adjoint. Equation (2.5) can now be solved as follows: let V be the (unitary) matrix
which diagonalizes X : V †XV = diag{x1, x2, . . . , xL} =: Xd, xj , being its eigenvalues,
j = 1, 2, . . . , L. Note that, of course, V does not depend on time. Then, putting

U(t) =




eix1t 0 0 . . . 0
0 eix2t 0 . . . 0
0 0 eix3t . . . 0
. . . . . . .

. . . . . . .

0 0 0 . . . eixLt




,

we get

a(t) = V U(t)V †a(0), (2.6)

where, as it is clear, a(0)T = (a1, a2, . . . , aL). If we further introduce the adjoint of the vector
a(t), a†(t) = (

a
†
1(t), a

†
2(t), . . . , a

†
L(t)

) = a†(0)V U †(t)V †, we can explicitly check that N̂ is a
constant of motion. Indeed we have

N̂(t) = a
†
1(t)a1(t) + a

†
2(t)a2(t) + · · · + a

†
L(t)aL(t) = a†(t) · a(t)

= (a†(0)V U †(t)V †) · (V U(t)V †a(0)) = a†(0) · a†(0) = N̂(0).

In order to analyse the time behaviour of the different n̂j (t), we simply have to compute
the mean value nj (t) = ωn1,n2,...,nL;M(n̂j (t)). This means that, for t = 0, the first trader
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Figure 1. n3(t) for α3 = 3 (left), α3 = 10 (middle), α3 = 100 (right).

possesses n1 shares, the second trader possesses n2 shares, and so on, and that the price of
the share is Mε. It should be mentioned that the only way in which a matrix element like
ωn1,n2,...,nL;M

(
ak

j

(
a
†
l

)m)
can be different from zero is when j = l and k = m. This follows from

the orthonormality of the set
{
ϕn1,n2,...,nL;M

}
which is a direct consequence of the canonical

commutation relations.
The easiest way to get the analytic expression for nj (t) is to fix the number of the traders,

starting with the simplest situation: L = 2. In this case we find that


n1(t) = 1

�2
{n1(α

2 + 2p2(1 + cos(�t))) + 2p2n2(1 − cos(�t))}

n2(t) = 2p2n1

�2
(1 − cos(�t))) + n2

(
1 +

2p2

�2
(cos(�t) − 1)

)
,

(2.7)

where we have defined �2 = α2 + 4p2, with α = α2 − α1 and p = p12 = p21.
It is not hard to check that n1(t) + n2(t) = n1 + n2, as expected. Also, if p = 0 then we

find n1(t) = n1 and n2(t) = n2 for all t. This is natural and expected, since when p = 0 there
is no interaction at all between the traders, so that there is no reason for n1(t) and n2(t) to
change in time. Another interesting consequence of (2.7) is that, if n1 = n2 = n, that is if the
two traders start with the same number of shares, they do not change this equilibrium during
the time: we find again n1(t) = n2(t) = n. Also this result is expected, since both t1 and t2
possess the same amount of money (their huge sources!) and the same number of shares. The
role of α1 and α2, in this case, is unessential. It is further clear that nj (t) is a periodic function
whose period, T = 2π

�
, decreases for |α| = |α1 − α2| and p increasing. Finally, if we call

�nj = maxt∈[0,T ] |nj (t) − nj (0)|, which represents the highest variation of nj (t) in a period,
we can easily check that �nj increases when |n1(0)−n2(0)| increases and when � decreases.

Remark. It is worth remarking that, since the number of shares should be integer, while the
functions n1(t) and n2(t) are not integers for general values of t, we could introduce a sort of
time per the mth transaction, τm, chosen in such a way that nj (τ1), nj (τ2), . . . are all integers,
j = 1, 2.

Let us now consider a market with three traders. In figure 1 we plot n3(t) with the initial
conditions n1 = 40, n2 = n3 = 0, with p12 = p13 = p23 = 1 and different values of α1, α2

and α3. In the figure on the left we have (α1, α2, α3) = (1, 2, 3), in the one in the middle
(α1, α2, α3) = (1, 2, 10) and in the one in the right (α1, α2, α3) = (1, 2, 100)

This plot, together with many others which can be obtained, e.g., considering different
initial conditions, suggests to interpret αj as a sort of inertia: the larger the value of αj , the
bigger the tendency of tj of keeping the number of his shares constant in time! We could also
think of α−1

j as a sort of information reaching tj (but not the other traders): if αj is large then
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Figure 2. n1(t), n2(t), n3(t) (first row) and n4(t), n5(t) (second row) for αj and nj as above.

not much information reaches tj which has therefore no input to optimize his interaction with
the other traders.

In this case, and also for more traders, it is not evident from our plots if a periodic
behaviour is again recovered. In any case, at least a quasi-periodic behaviour is observed with
a quasi-period which is compatible with the same T found in the case of the two traders. It is
clear, however, that the analytic expression of nj (t) can be found using (2.6).

As for the L = 2 situation, we recover that if n1 = n2 = n3 = n, then n1(t) = n2(t) =
n3(t) = n, for all t. Moreover, if n1 � n2 � n3 � n, then nj (t) have all small oscillations
around n. But, if n1 � n2 �= n3, and if pij = 1 for all i, j with i �= j , then all the functions
nj (t) change considerably with time. The reason is the following: since n3 differs from n1

and n2, it is natural to expect that n3(t) changes with time. But, since N = n1(t)+n2(t)+n3(t)

must be constant, both n2(t) and n1(t) must change in time as well. The same conclusion
can be deduced also if p23 = 0 while all the other pij ’s are equal to 1: even if t2 does not
interact with t3, the fact that t1 interacts with both t2 and t3, together with the fact that N must
be constant, implies again that all the nj (t)’s need to change in time. Finally, it is clear that if
p13 = p23 = 0, then t3 interact neither with t1 nor with t2 and, indeed, we find that n3(t) does
not change with time: this is a consequence of the fact that, in this case, [H, n̂3] = 0.

Analogous conclusions can be deduced also for five (or more) traders. In particular figure 2
shows that there is no need for all the traders to interact among them to have a non-trivial
time behaviour. Indeed, even if p15 = p25 = 0, which means that t5 may only interact
directly with t3 and t4, we get the following plots for (α1, α2, α3, α4, α5) = (1, 2, 3, 4, 5) and
(n1, n2, n3, n4, n5) = (40, 0, 0, 0, 0). We see that the number of shares of each trader changes
in time with the same order of magnitude.

We end this section stressing that the interpretation of αj as a sort of inertia is also
suggested by the analysis of this larger number of traders.

3. A different model

We consider now another model, which differs from the previous one since the cash, the price
of the share and the supply of the market are introduced in a non-trivial way. In particular
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we require that assumptions 1, 2, 3, 4 and 6 of the previous section still hold. Moreover we
require the following:

(a) When the tendency of the market to buy a share, i.e. the market demand, increases
then the price of the share increases as well. Equivalently, when the tendency of the market to
sell a share, i.e. the market supply, increases then the price of the share decreases.

(b) For our convenience the demand and the supply are expressed in term of natural
numbers.

(c) We take ε = 1 in the following: 1 is therefore the unit of money.
The formal Hamiltonian of the model is the following operator:


H̃ = H0 + H̃I , where

H0 = ∑L
l=1 αla

†
l al +

∑L
l=1 βlc

†
l cl + o†o + p†p,

H̃I = ∑L
i,j=1 pij

(
a
†
i aj

(
cic

†
j

)P̂
+ aia

†
j

(
cj c

†
i

)P̂ )
+ (o†p + p†o),

(3.1)

where, as before, P̂ = p†p. Here the following commutation rules are assumed:[
al, a

†
n

] = [
cl, c

†
n

] = δlnI, [p, p†] = [o, o†] = I, (3.2)

while all the other commutators are zero. As for the previous model we assume that pii = 0.
Here the operators a

�

l and p� have the same meaning as in the previous section, while c
�

l and
o� are respectively the cash and the supply operators. The states in (2.4) must be replaced by
the states

ω{n};{k};O;M(.) = 〈ϕ{n};{k};O;M, . ϕ{n};{k};O;M〉, (3.3)

where {n} = n1, n2, . . . , nL, {k} = k1, k2, . . . , kL and

ϕ{n};{k};O;M :=
(
a
†
1

)n1 · · · (a†
L

)nL
(
c
†
1

)k1 · · · (c†L)kL
(o†)O(p†)M√

n1! . . . nL!k1! . . . kL!O!M!
ϕ0. (3.4)

Here ϕ0 is the vacuum of the model: ajϕ0 = cjϕ0 = pϕ0 = oϕ0 = 0, for j = 1, 2, . . . , L.
Let us now see what is the meaning of the Hamiltonian above and for which reason we

call it formal.
H0 contains all that is related to the free dynamics of the model.
H̃I is the interaction Hamiltonian, whose terms have a natural interpretation as follows:
The presence of o†p implies that when the supply increases then the price must decrease.

Of course p†o produces exactly the opposite effect.

The presence of a
†
i aj

(
cic

†
j

)P̂
implies that ti increases of one unit the number of shares in

his portfolio but, at the same time, his cash decreases because of cP̂
i , that is it must decrease

of as many units of cash as the price operator P̂ demands. Moreover, the trader tj behaves
exactly in the opposite way: he has one share less because of aj but his cash increases because

of
(
c
†
j

)P̂
. Of course, the Hermitian conjugate term aia

†
j

(
cj c

†
i

)P̂
in H̃I produces a specular

effect for the two traders.
As in the previous section, if H̃I = 0, then there is no nontrivial dynamics of the relevant

observables of the system, like c
†
j cj and n

†
j nj . This can also be seen as a criterium to fix

the free Hamiltonian of the system: it is only the interaction between the traders which may
modify their status!

However, despite of this clear physical interpretation, the Hamiltonian in (3.1) suffers
of a technical problem: since cj and c

†
j are not self-adjoint operators, it is not obvious how

to define, for instance, the operator cP̂
j . Indeed, if we formally write cP̂

j as eP̂ log cj , then we
cannot use functional calculus to define log cj . Also, we cannot use a simple series expansion
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since the operators involved are all unbounded so that the series we get is surely not norm
convergent and many domain problems appear. For this reason, we find more convenient to
replace H̃ with an effective Hamiltonian, H, defined as


H = H0 + HI , where

H0 = ∑L
l=1 αla

†
l al +

∑L
l=1 βlc

†
l cl + o†o + p†p,

HI = ∑L
i,j=1 pij

(
a
†
i aj

(
cic

†
j

)M
+ aia

†
j

(
cj c

†
i

)M)
+ (o†p + p†o),

(3.5)

where M = ω{n};{k};O;M(P̂ ). Note that, because of the fact that pii = 0, there is no difference

in HI above if we write
(
cic

†
j

)M
or (ci)

M
(
c
†
j

)M
even if the two operator cj and c

†
j do not

commute. Note also that if we consider a state ω over A different from ω{n};{k};O;M , as we will
do in the next section, then ω(P̂ ) could be different from M.

Three integrals of motion for our model trivially exist:

N̂ =
L∑

i=1

a
†
i ai, K̂ =

L∑
i=1

c
†
i ci and �̂ = o†o + p†p. (3.6)

This can be easily checked since the canonical commutation relations in (3.2) imply that
[H, N̂ ] = [H, �̂] = [H, K̂] = 0.

The fact that N̂ is conserved clearly means that no new share is introduced in the market.
Of course, also the total amount of money must be a constant of motion since the cash is
assumed to be used only to buy shares. Since also �̂ commutes with H, moreover, if the mean
value of o†o increases with time then necessarily the mean value of the price operator must
decrease and vice versa. This is exactly the mechanism assumed in point (a) at the beginning
of this section.

Remark. It may be worth noticing that this is not the only way in which requirement (a) could
be implemented, but it is surely the simplest one. Just to give few other examples, we could
ask for one the following combinations to remain constant in time: (o†o)2 + (p†p)2, o†op†p
or many others.

Another consequence of the definition of H is that L other constants of motion also exist.
They are the following operators:

Q̂j = a
†
j aj +

1

M
c
†
j cj , (3.7)

for j = 1, 2, . . . , L. This can be checked explicitly computing [H, Q̂j ] and proving that
all these commutators are zero. But we can also understand this feature simply noticing
that (i) Q̂j commutes trivially with H0 and (ii) the term a

†
i aj

(
cic

†
j

)M
in HI obviously

preserves not only the total number of shares and the total amount of cash, but also a
certain combination of the shares and the cash: as far as ti is concerned, a

†
i increases of

one unit the number of shares while cM
i decreases of M units the amount of cash. This means

that if a certain vector  represents ni shares and ki units of cash, then a
†
i c

M
i  describes

ni + 1 shares and ki − M units of cash. Therefore we have Q̂i = (
ni + 1

M
ki

)
 and

Q̂i

(
a
†
i c

M
i 

) = (
ni + 1 + 1

M
(ki − M)

)(
a
†
i c

M
i 

) = (
ni + 1

M
ki

)(
a
†
i c

M
i 

)
. So, it is not surprising

that
[
Q̂i, a

†
i c

M
i

] = 0 and, as a consequence, that [Q̂i, H ] = 0.
The Hamiltonian (3.5) contains a contribution, hpo = o†o + p†p + (o†p + p†o), which is

decoupled from the other terms. This means that, within our model, the time evolution of the
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supply and the price operators do not depend on the number of shares or on the cash, and can
be deduced referring only to hpo. The Heisenberg equations of motion are the following:{

iȯ(t) = o(t) + p(t)

iṗ(t) = o(t) + p(t),
(3.8)

which shows that o(t) − p(t) is constant in t, so that �̂ = o − p is still another
integral of motion. Solving this system we get o(t) = 1

2 {o(e−2it + 1) + p(e−2it − 1)}
and p(t) = 1

2 {p(e−2it + 1) + o(e−2it − 1)}. It is now trivial to check explicitly that both
�̂(t) = o(t) − p(t) and �̂(t) = o†(t)o(t) + p†(t)p(t) do not depend on time. If we now
compute the mean value of the price and supply operators on a state number we get{

Pr(t) = 1
2 {Pr + Of + (Pr − Of ) cos(2t)}

Of (t) = 1
2 {Pr + Of − (Pr − Of ) cos(2t)}, (3.9)

where we have called Of (t) = ω{n};{k};O;M(o†(t)o(t)) and Pr(t) = ω{n};{k};O;M(p†(t)p(t)).
Recall that Pr = Pr(0) = M . Equations (3.9) show that, if Of = Pr then Of (t) = Pr(t) =
Of for all t while, if Of � Pr then Of (t) and Pr(t) are almost constant. In the following we
will replace Pr(t) with an integer value, the value M which appears in the Hamiltonian (3.5),
which is therefore fixed after the solution (3.9) is found. This value is obtained by taking
a suitable mean of Pr(t) or working in one of the following assumptions: (i) Of = Pr ; or
(ii) Of � Pr or yet (iii) |Of + Pr | 	 |Pr − Of |. In these last two situations we may replace
Pr(t), with a temporal mean, 〈Pr(t)〉, since there is not much difference between these two
quantities.

Let us now recall that the main aim of each trader is to improve the total value of his
portfolio, which we define as follows:

�̂j (t) = γ n̂j (t) + k̂j (t). (3.10)

Here we have introduced the value of the share γ as decided by the market, which does not
necessarily coincides with the amount of money which is paid to buy the share. As is clear,
�̂j (t) is the sum of the complete value of the shares, plus the cash. The fact that for each j

the operator Qj is an integral of motion allows us to rewrite the operator �̂j (t) only in terms
of n̂j (t) and of the initial conditions. We find

�̂j (t) = �̂j (0) + (γ − M)(n̂j (t) − n̂j (0)). (3.11)

In order to get the time behaviour of the portfolio, it is enough to obtain n̂j (t). If we write
the Heisenberg equation for n̂j (t), ˙̂nj (t) = i[H, n̂j (t)], we see that this equation involves the
time evolution of aj , cj and their adjoint. The equations of motion for these operators should
be added to close the system, and the final system of differential equations cannot be solved
exactly. The easiest way to proceed is to develop the following simple perturbative expansion,
well known in quantum mechanics:

n̂j (t) = eiHt n̂j e−iHt = n̂j + it[H, n̂j ] +
(it)2

2!
[H, n̂j ]2 +

(it)3

3!
[H, n̂j ]3 + · · · , (3.12)

where [H, n̂j ]1 = [H, n̂j ] = Hn̂j − n̂jH and [H, n̂j ]n+1 = [H, [H, n̂j ]n] for n � 1, and
then to take its mean value on a state ω{n};{k};O;M up to the desired order of accuracy. Of
course, we can compute as many contributions of the above expansion as we want. However,
the expression for [H, n̂j ]n becomes more and more involved as n and L increase. Just as an
example, we consider here the case L = 2: up to the third order in time we find

n1(t) = ω{n};{k};O;M(n̂1(t)) = n1 + t2p2
12

(
ε2

+ − ε2
−
)

+ O(t4), (3.13)
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where ε± are related to the state ω{n};{k};O;M as follows:

ε+ =
√

(n1 + 1)n2
k1!

(k1 − M)!

(k2 + M)!

k2!
, ε− =

√
(n2 + 1)n1

(k1 + M)!

k1!

k2!

(k2 − M)!
.

Of course, in order to have all the above quantities well defined, we need to have both
k2 − M � 0 and k1 − M � 0. This is a natural requirement since it simply states that a trader
can buy a share only if he has the money to pay for it!

Remarks. (1) This solution has some analogies with that given in (2.7). Indeed, if we expand
n1(t) in (2.7) as a power of t, we find an expression which is very close to equation (3.13).
In particular, we find that for both models there is no contribution coming from αj (and from
βj here) up to the order t3. Also, for this model, if t1 and t2 possess the same amount of cash
for t = 0, k1 = k2, then, since ε2

+ − ε2
− turns out to be proportional to n2 − n1, we deduce

that n1(t) = n2(t) if n1 = n2. This is again exactly the same conclusion we have obtained in
section 2: n1 = n2 is a stability condition.

(2) Using the fact that Q1 is constant we can also find the value of the cash of t1 as a
function of time: k1(t) = k1 − Mt2p2

12

(
ε2

+ − ε2
−
)

+ O(t4) while its portfolio evolves like

�1(t) = �1(0) + (γ − M)t2p2
12

(
ε2

+ − ε2
−
)

+ O(t4). (3.14)

(3) This formula allows us to get some conclusions concerning the time behaviour of the
portfolio of t1 for small time. In particular we can deduce that

if k1 = k2 and n1 = n2 then kj (t) = kj and nj (t) = nj , j = 1, 2. The two traders are
already in an equilibrium state and there is no way to let them change their state;

if k1 = k2 =: k but n1 �= n2 then, since ε2
+ − ε2

− = (k+M)!
(k−M)! (n2 − n1), it follows that

ε2
+ − ε2

− > 0 if n2 > n1 and it is negative otherwise. This implies that, for small t, n1(t)

increases with t if n2 > n1 and decreases if n2 < n1. This means that the trader with more
shares tends to sell some of his shares to the other trader, to increase his liquidity. Moreover,
since k1(t) = Q1 − n1(t), k1(t) decreases when n1(t) increases and vice versa. We also find

�1(t) � �1(0) + (γ − M)t2p2
12

(k + M)!

(k − M)!
(n2 − n1), (3.15)

which shows that, if γ > M,�1(t) increases with t if n2 > n1 and decreases if n1 > n2. This
can be understood as follows: if γ > M , then the market is giving to the shares a larger value
than the amount of cash used to buy them. Therefore, if n2 > n1, since as we have seen n1(t)

increases for small t, the first trader is paying M for a share whose value is γ > M . That is
why the value of his portfolio increases!

Let now take n1 = n2 =: n and k1 �= k2. In this case after few algebraic computations
we see that ε2

+ − ε2
− > 0 if k1 > k2 while ε2

+ − ε2
− < 0 if k1 < k2. This implies that, if k1 > k2,

then n1(t) increases while k1(t) decreases as t increases. Moreover, if γ > M , then �1(t)

increases its value with t. This can be understood again as before: since n1(t) is an increasing
function, for t > 0 small enough, and since the market price of the share γ is larger than M,
t1 improves his portfolio since he spends M to get γ .

(4) As for the second trader, we can easily find n2(t), k2(t) and �2(t) simply recalling
that N = n1(t) + n2(t) is constant in time.

(5) The case in which γ < M can be analysed in the very same way as before.

4. Mean-field approximation

It is clear that the results of the previous section suffer of the two major approximations: first
of all our final considerations have been obtained only in the case of two traders. Considering
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more traders is technically much harder and goes beyond the real aims of this paper. Second,
the perturbation expansion we have introduced in (3.12) gives only an approximated version
of the exact solution. In this section we propose a particular version of the model considered
before which, under a sufficiently general assumption on αj and βj , can be explicitly solved
in the so-called mean-field approximation. This different version of our model is relevant
since it is related to a market in which the number of traders is very large, virtually divergent.
In other words, while in the previous section we have considered a stock market with very
few traders, using the mean-field approximation we will be able to analyse a different market,
namely one with a very large number of traders.

Our model is defined by the same Hamiltonian as in (3.5) but with M = 1. This is not a
major requirement since it corresponds to a renormalization of the price of the share, which
we take equal to 1: if you buy a share, then your liquidity decreases by one unit while it
increases, again by one unit, if you sell a share. It is clear that all the same integrals of motion
as before exist: N̂, K̂, �̂, �̂ and Qj = n̂j + k̂j , j = 1, 2, . . . , L. They all commute with H,
which we now write as


H = h + hpo, where

h = ∑L
l=1 αln̂l +

∑L
l=1 βlk̂l +

∑L
i,j=1 pij

(
a
†
i aj cic

†
j + aia

†
j cj c

†
i

)
hpo = o†o + p†p + (o†p + p†o).

(4.1)

For hpo we can repeat the same argument as in the previous section and an explicit solution can
be found which is completely independent of h. In particular we have ω{n};{k};O;M(P̂ ) = 1. For
this reason, from now on, we will identify H only with h and work only with this Hamiltonian.
Let us introduce the operators

Xi = aic
†
i , (4.2)

i = 1, 2, . . . , L. The Hamiltonian h can be rewritten as

h =
L∑

l=1

(αln̂l + βlk̂l) +
L∑

i,j=1

pij

(
X

†
i Xj + X

†
jXi

)
. (4.3)

The following commutation relations hold:[
Xi,X

†
j

] = δij (k̂i − n̂i), [Xi, n̂j ] = δijXi [Xi, k̂j ] = −δijXi, (4.4)

which show how the operators
{{

Xi,X
†
i , n̂i , k̂i

}
, i = 1, 2, . . . , L

}
are closed under

commutation relations. This is quite important, since it produces the following system of
differential equations:


Ẋl = i(βl − αl)Xl + 2iX(L)

l (n̂l − k̂l)

˙̂nl = 2i
(
XlX

(L)
l

† − X
(L)
l X

†
l

)
˙̂kl = −2i

(
XlX

(L)
l

† − X
(L)
l X

†
l

)
whose first obvious consequence is that d

dt
(n̂l + k̂l) = 0, as we already knew from the general

analysis of the integrals of motion for our model. Here we have introduced the following
mean operators: X

(L)
l = ∑L

i=1 pliXi, l = 1, 2, . . . , L. Using the constant Ql = n̂l + k̂l and
considering only the relevant equations, the above system simplifies and becomes{

Ẋl = i(βl − αl)Xl + 2iX(L)
l (2n̂l − Ql)

˙̂nl = 2i
(
XlX

(L)
l

† − X
(L)
l X

†
l

)
.

(4.5)

This system, as l takes all the values 1, 2, . . . , L, is a closed system of differential equations
for which an unique solution surely exists. However, in order to find explicitly this solution,
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it is convenient to introduce now the mean-field approximation which essentially consists in
replacing the two-traders interaction pij with a sort of global interaction (meaning with this
that all the traders may speak among them) whose strength is inversely proportional to the
number of traders: this concretely means that we have to replace pij with p̃

L
, with p̃ � 0.

After this replacement we have that

X
(L)
l =

L∑
i=1

pliXi −→ p̃

L

L∑
i=1

Xi,

whose limit, for L diverging, only exists in suitable topologies, [6, 7], like, for instance, the
strong one restricted to a set of relevant states. Let τ be such a topology. We define

X∞ = τ − lim
L→∞

p̃

L

L∑
i=1

Xi, (4.6)

where, as it is clear, the dependence on the index l is lost because of the replacement pli → p̃

L
.

This is a typical behaviour of transactionally invariant quantum systems, where pl,i = pl−i .
The operator X∞ belongs to the centre of the algebra A, that is it commutes with all the
elements of A: [X∞, A] = 0 for all A ∈ A. In this limit system (4.5) above becomes{

Ẋl = i(βl − αl)Xl + 2iX∞(2n̂l − Ql)

˙̂nl = 2i
(
XlX

∞† − X∞X
†
l

)
,

(4.7)

which, following the notation introduced in [8] in a different context, can be called the
semiclassical approximation of (4.5). This system can now be solved if we assume that

βl − αl =: � (4.8)

for all l = 1, 2, . . . , L. Under this assumption, in fact, we can deduce the time dependence
of X∞(t) and, as a consequence, we can completely solve system (4.7). The procedure is as
follows:

(i) Using (4.7) we construct the following means: 1
L

∑L
l=1 Ẋl = d

dt
X

(L)
l and 1

L

∑L
l=1

˙̂nl .
(ii) Then we take the τ − limL→∞ of the system we have obtained in this way. Introducing

the following intensive operators

η = τ − lim
L→∞

1

L

L∑
l=1

n̂l, Q = τ − lim
L→∞

1

L

L∑
l=1

Ql, (4.9)

which again belong to the centre of the algebra, we find that{
Ẋ∞ = i�X∞ + 2iX∞(2η − Q)

η̇ = 2i(X∞X∞† − X∞X∞†) = 0.
(4.10)

This system can be easily solved: η(t) = η and X∞(t) = eiνtX∞
0 , where ν = � + 4η − 2Q.

Note that equation η(t) = η has an obvious interpretation: the various n̂l(t) change in time
in such a way that their mean does not change, see (4.9). This is again a consequence of
[H, N̂ ] = 0.

(iii) This solution must be now replaced in (4.7). It is convenient to consider two different
situations: � = ν and � �= ν. We begin with this last case. With the change of variable
Xl(t) = eitν

{
Zl(t) + 2

�−ν
X∞

0 Ql

}
, since both Ql and X∞

0 do not depend on time, we deduce
the following system:{

Żl = i(� − ν)Zl + 4iX∞
0 n̂l

˙̂nl = 2i
(
ZlX

∞
0

† − X∞
0 Z

†
l

)
,

(4.11)
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which becomes closed if we also add the differential equation for Z
†
l . Then we have

�̇l(t) = i��l(t), (4.12)

where we have introduced

� ≡

� − ν 4X∞

0 0
2X∞

0 0 −2X∞
0

0 −4X∞
0 −(� − ν)


 , �l(t) ≡


Zl(t)

n̂l(t)

Z
†
l (t)


 .

Remark. Note that the procedure developed here implies, as a consequence, that the dynamical
behaviour of all the traders is driven by the same differential equations. This is a consequence of
condition (4.8), which introduce the same quantity � for all the traders. Possible differences
in the time evolution of the portfolios may arise therefore only because of different initial
conditions. We discuss in appendix B a different approximation, which produces different
equations of motion for different traders.

The solution of equation (4.12) can be written as

�l(t) = V ei�dtV −1�l(0), (4.13)

where V is the matrix which diagonalizes the matrix � in the following sense:

V −1�V = �d :=

δ1 0 0

0 δ2 0
0 0 δ3


 .

Remark. Note that V need not to be unitary since � is not Hermitian.

It is clear that we are only interested in the second component of the vector �l(t), which
is exactly n̂l(t). Carrying out all the computations and computing the mean value of n̂l(t) on
a state number ω{n};{k};O;M , we find that

nl(t) = 1

ω2

{
nl(� − ν)2 − 8

∣∣X∞
0

∣∣2
(kl(cos(ωt) − 1) − nl(cos(ωt) + 1))

}
, (4.14)

where we have introduced ω =
√

(� − ν)2 + 16
∣∣X∞

0

∣∣2
. This formula shows that nl(t) is

a periodic function whose period, T = 2π
ω

, increases when � approaches ν and when∣∣X∞
0

∣∣ approaches zero. It is also interesting to remark that, since ṅl(0) = 0 and

n̈l(0) = 8
∣∣X∞

0

∣∣2
(kl − nl), nl(t) is an increasing function for t in a right neighbourhood

of 0 if kl > nl , while it is decreasing if kl < nl . This means that if tl has a large liquidity, then
he spends money to buy shares. On the contrary, if tl has a lot of shares, then he tends to sell
shares and to increase his liquidity, until the situation changes again.

As for the portfolio, its behaviour is the following: since �l(t) = �l(0)+ (γ −1)(nl(t)−
nl(0)), it is clear that �̇l(0) = 0 and, if γ > 1 and kl > nl , �̈l(0) > 0. This means that, in a
right neighbourhood of t = 0,�l(t) increases as we expect, because of the same arguments
discussed in the previous section.

Remark. It may be worth noticing that if X∞
0 = 0 then the number of shares does not change

with time. This is a trivial consequence of (4.14) and of the definition of ω, but can also
be deduced directly from (4.12) and from the extremely simple expression of � in this case.
From the first equation in (4.7) and from the definition of � we can also deduce that, in this
case, Xl(t) = ei�tXl(0).
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Let us finally consider what happens if � = ν. In this case the system (4.7) takes a
simpler expression and, again, the solution can be found explicitly. Without going in many
details we find nl(t) = Ql

2 +
(
nl − Ql

2

)
cos(ωt) + B sin(ωt), where ω = 4

∣∣X∞
0

∣∣ (since � = ν),

and B = 2i
ω

(
X∞

0
†Xl − X∞

0 X
†
l

)
, which is again periodic with the same period as before.

Let us now briefly consider what happens on states of a different nature. In particular we
want to understand if any meaning can be given to a KMS-state, that is, see appendix A, to an
equilibrium state for a non-zero temperature.

Suppose that this is so, that is that a state ωβ satisfying condition (A.6) can be used
to deduce the existence of an equilibrium for the system under consideration. It is well
known that ωβ �= ω{n};{k};O;M , so that our previous conclusions do not necessarily hold.
However, if we consider the easiest nontrivial situation, X∞

0 = 0, it is still true that
Xl(t) = ei�tXl = ei�talc

†
l . If we now take A = B† = Xl in (A.6), we find that

eβ�ωβ

(
ala

†
l c

†
l cl

) = ωβ

(
a
†
l alclc

†
l

)
. Assume now that ωβ can be factorized as follows,

ωβ = ω
(a)
β ⊗ ω

(c)
β , with ω

(a)
β related to the number of shares and ω

(c)
β to the cash, and let

us put m
(a)
l = ω

(a)
β

(
ala

†
l

)
, n

(a)
l = ω

(a)
β

(
a
†
l al

)
, m

(c)
l = ω

(c)
β

(
clc

†
l

)
and n

(c)
l = ω

(c)
β

(
c
†
l cl

)
. Then

the KMS condition becomes eβ�m
(a)
l n

(c)
l = n

(a)
l m

(c)
l . Since the commutation relations also

imply that m
(a)
l = 1 + n

(a)
l and m

(c)
l = 1 + n

(c)
l , this equality produces the following condition:

eβ� = n
(a)
l

(
1 + n

(c)
l

)
n

(c)
l

(
1 + n

(a)
l

) , (4.15)

at least if the denominator is different from zero. A first obvious remark is that, even if the
single two-particles states may depend on l, the combination in the rhs of equation (4.15) must
not.

In order to analyse condition (4.15), it is convenient to consider three different conditions:
(i) � > 0, (ii) � = 0 and (iii) � < 0, and, for each of these situations, the following cases:
(a) n

(a)
l > n

(c)
l , (b) n

(a)
l = n

(c)
l or (c) n

(a)
l < n

(c)
l .

Case (ia). In this case, for all values of � > 0, it is not hard to check that an unique pair(
β0, n

(c)

(o)

)
exists such that (4.15) can be verified. It is worth remarking that this also fixes the

value of n
(a)

(o), since Ql is a constant of motion. It is also possible to check that the smaller β�,

the larger the value of n
(c)

(o), so that n
(a)

(o) turns out to be smaller.

Case (ib). In this case (4.15) can be verified if and only if β = 0 independently of the value
of n

(c)
l .

Case (ic). In this case no solution of (4.15) exists.

Case (ii). In this case a solution of (4.15) exists only if n
(a)
l = n

(c)
l .

Finally, if � < 0, our conclusions are exactly specular to those in (i): no solution exists
for (iii(a)), β = 0 is the only possibility for equation (4.15) to hold in case (iii(b)) and, finally,
an unique pair

(
β0, n

(c)

(o)

)
exists which verifies (4.15) in case (iii(c)).

Since � > 0 implies that βl > αl for all l, using the interpretation discussed in section 2
we could say that the inertia of the cash is larger than that of shares.

Exactly the opposite happens when � < 0, since in this case the inertia of the shares is
larger than that of cash.

In � = 0 an equilibrium can be reached only if the system was already in an equilibrium
state for t = 0, i.e. if n

(a)
l = n

(c)
l , that is if tl has the same amount of cash and shares for t = 0.

Also, if � �= 0 and if, for t = 0, n
(a)
l = n

(c)
l , then an equilibrium can be reached only if

β = 0.
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For what concerns the value of the portfolio at the time t̃ in which the equilibrium is
reached, we get

�l(t̃) = �l(0) + (γ − 1)
(
kl(0) − n

(c)

(o)

)
.

From this we deduce that, when γ > 1, tl increments the value of his portfolio if kl(0) > n
(c)

(o).
But, for this to be possible, the value of βo (for fixed � > 0) must be sufficiently high. If
γ < 1 the trader tl increments the value of his portfolio if kl(0) < n

(c)

(o). In this case the value
of βo (again for fixed � > 0) must be sufficiently low.

These considerations suggest therefore to interpret βγ−1 as a kind of information reaching
the trader tl , which should be considered together with the information already arising because
of αl and βl . This is again because we are assuming that a larger amount of information
produces a larger increment of the portfolio.

Remark. It must be observed, however, that in this procedure all the traders receive the same
information, since βγ−1 is the same for all tl . What can make the difference between the
traders is the information coming from α−1

j and β−1
j , as suggested in section 2. So we can

distinguish between a global information, reaching all the traders in the same way, and a local
information, which may be different from trader to trader.

5. Conclusions and outcome

In this paper we have proposed an operator approach to the analysis of some toy models of a
stock market. We have shown that nontrivial results concerning the dynamical behaviour of
the portfolio of each trader can be obtained, even using the existence of conserved quantities,
i.e., of some operators commuting with the Hamiltonian. We have also discussed a possible
use of the KMS-states within this contest.

Many things are still to be done. Among these, first of all we should introduce more
than a single kind of shares. Then a different, and more realistic, mechanism to determine the
price of the shares should be considered. Also, the role of condition (4.8) should be better
understood, and a deeper analysis and understanding of KMS-states has to be carried out.
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Appendix A. Mathematical background

This appendix, which is meant only for those who are not familiar with operator algebras and
their applications to QM∞, is essentially based on known results discussed in [9] and [10],
for instance. We want to stress that only few useful facts will be discussed here, paying no
particular care about the mathematical rigor. In particular we will not insist on the unbounded
nature of the operators involved in the game. This is reasonable since the relevant spectrum
of all the operators relevant for our discussion are usually bounded subsets of R.

Let H be an Hilbert space and B(H) the set of all the bounded operators on H. B(H) is a
C*-algebra, that is an algebra with involution which is complete under a norm ‖.‖ satisfying
the so-called C*-property: ‖A∗A‖ = ‖A‖2, for all A ∈ B(H). As a matter of fact B(H) is
usually seen as a concrete realization of an abstract C*-algebra. It has been widely discussed
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in the literature that, as far as physical applications are concerned, it is convenient to assume
that the relevant observables of a certain system generate a von Neumann algebra, i.e. a closed
subset of B(H), or a topological quasi *-algebra. Let S be our physical system and A the set
of all the operators useful for a complete description of S (sometimes called the observables
of S). For simplicity reasons it is convenient to assume that A is a C* or a von Neumann
algebra, even if this is not always possible. The description of the time evolution of S is
related to a self-adjoint operator H = H †, which will be assumed not to depend explicitly on
time, which is called the Hamiltonian of S. Several equivalent descriptions are possible: the
Schrödinger or the interaction representation, which will not be used here, or the Heisenberg
representation, in which the time evolution of an observable X ∈ A is given by

X(t) = eiHtX e−iHt (A.1)

or, equivalently, by the solution of the differential equation
dX(t)

dt
= i eiHt [H,X] e−iHt = i[H,X(t)], (A.2)

where [A,B] := AB − BA is the commutator between A and B. The time evolution defined
in this way is usually a one-parameter group of automorphisms of A.

In our paper a special role is played by the so-called canonical commutation relations
(CCR): we say that a set of operators

{
al, a

†
l , l = 1, 2, . . . , L

}
satisfy the CCR if the following

hold: [
al, a

†
n

] = δlnI, [al, an] = [
a
†
l , a

†
n

] = 0 (A.3)

for all l, n = 1, 2, . . . , L. These operators, which are widely analysed in any textbook in
quantum mechanics, see [11] for instance, are those which are used to describe L different
modes of bosons. The operators n̂l = a

†
l al and N̂ = ∑L

l=1 n̂l are both self-adjoint operators.
In particular n̂l is the number operator for the lth mode, while N̂ is the number operator of S.

The Hilbert space of our system is constructed as follows: we introduce the vacuum of the
theory, that is a vector ϕ0 which is annihilated by all the annihilation operators al : alϕ0 = 0
for all l = 1, 2, . . . , L. Then we act on ϕ0 with the creation operators a

†
l :

ϕn1,n2,...,nL
:= 1√

n1!n2! . . . nL!

(
a
†
1

)n1
(
a
†
2

)n2 · · · (a†
L

)nL
ϕ0. (A.4)

These vectors form an orthonormal set and are eigenstates of both n̂l and N̂ : n̂lϕn1,n2,...,nL
=

nlϕn1,n2,...,nL
and N̂ϕn1,n2,...,nL

= Nϕn1,n2,...,nL
, where N = ∑L

l=1 nl . For this reason the
following interpretation is given: if the L different modes of bosons of S are described by
the vector ϕn1,n2,...,nL

then n1 bosons are in the first mode, n2 in the second mode, and so on.
The operator n̂l acts on ϕn1,n2,...,nL

and returns nl , which is exactly the number of bosons in the
lth mode. The operator N̂ , finally, counts the total number of bosons.

A particle in mode l is created or annihilated by simply acting on ϕn1,n2,...,nL
, respectively

with a
†
l or al . Indeed we have n̂l

(
alϕn1,n2,...,nL

) = (nl−1)
(
alϕn1,n2,...,nL

)
and n̂l

(
a
†
l ϕn1,n2,...,nL

) =
(nl + 1)

(
a
†
l ϕn1,n2,...,nL

)
.

The Hilbert space is obtained by taking the closure of the linear span of all these vectors.
An operator Z ∈ A is a constant of motion if it commutes with H. Indeed in this case

equation (A.2) implies that Ż(t) = 0, so that Z(t) = Z for all t.
The vector ϕn1,n2,...,nL

in (A.4) defines a vector (or number) state over the algebra A as

ωn1,n2,...,nL
(X) = 〈

ϕn1,n2,...,nL
, Xϕn1,n2,...,nL

〉
, (A.5)

where 〈, 〉 is the scalar product in the Hilbert space H of the theory. To be more precise, we
should replace (A.5) with the following formula:

ωn1,n2,...,nL
(X) = 〈

ϕn1,n2,...,nL
, π(X)ϕn1,n2,...,nL

〉
,
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where π is a representation of the (abstract) algebra A in the Hilbert space H. We will avoid
this unessential complication along this paper.

In general, a state ω over A is a linear positive functional which is normalized, that is such
that ω(I) = 1, where I is the identity of A. The states introduced above describe a situation in
which the number of all the different modes of bosons is clear. But different states also exist
and are relevant. In particular the so-called KMS state, i.e. the equilibrium state for systems
with infinite degrees of freedom, are usually used to prove the existence of phase transitions
or to find conditions for an equilibrium to exist. Without going into the mathematical rigorous
definition, see [10], a KMS state ω with inverse temperature β satisfies the following equality:

ω(AB(iβ)) = ω(BA), (A.6)

where A and B are general elements of A and B(iβ) is the time evolution of the operator B
computed at the complex value iβ of the time.

Appendix B. On system (4.7)

We will show now how to solve system (4.7) without using condition (4.8).
For this we introduce the following quantities: γl = βl − αl , X∞

γ k = τ − limL
1
L

∑L
l=1 γ k

l

Xl , k = 1, 2, . . . , ηγ = τ − limL
1
L

∑L
l=1 γln̂l , and Qγ = τ − limL

1
L

∑L
l=1 γlQl . Of course,

we are assuming here that all these limits do exist. Repeating the same steps as in section 4,
we find the following system:{

Ẋ∞ = iX∞
γ + 2iX∞(2η − Q)

η̇ = 0.

To close this system, we also need the differential equation for X∞
γ which, as it is easily

understood, involves X∞
γ 2 , ηγ and Qγ . Note that, in our previous approximation, these

operators turned out to be equal respectively to �2X∞,�η and �Q. Moreover, in that
approximation, we also had X∞

γ = �X∞, so that the system above was already closed. We
improve our original approximation by taking now X∞

γ as a new variable and replacing X∞
γ 2 , ηγ

and Qγ with �̃2X∞, �̃η and �̃Q, where we have introduced �̃ = limL
1
L

∑L
l=1 γl , assuming

that it exists. It should be noticed that �̃ extends � in the sense that they coincide if γl = �

for all l. The equation for X∞
γ is therefore Ẋ∞

γ = i�̃2X∞ + 2iX∞�̃(2η − Q). For the sake of
simplicity we will work here assuming that X∞

γ (0) = 0 and 2µ + �̃ = 0, where µ = 2η − Q.
With these assumptions, which could be avoided in a more general analysis, we can repeat the
same steps as in section 4, getting the following result:

nl(t) = 1

ω2
l

{
nl(γl + �̃)2 − 32µ2

�̃2

∣∣X∞
0

∣∣2
(kl(cos(ωlt) − 1) − nl(cos(ωlt) + 1))

}
,

where we have introduced ωl =
√

(γl + �̃)2 + 64µ2

�̃2

∣∣X∞
0

∣∣2
. It is clear now that different traders

may have different behaviours, depending on the related value of γl : it is interesting to notice,
for instance, that if |γl| → ∞, that is when αl and βl are very different from each other, then
nl(t) = nl . This is not so for zero or intermediate values of |γl|, for which a nontrivial time
evolution of nl(t) is recovered.
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